Plato's Solids

Includes 195 precision 50 foam dual pieces. and detariled instructions by Dr. Robert Fathauer

Why are there only 5 perfect 3 D shapes? This secret was closely guarded by ancient Greeks, and is the mathematical basis of nearly all natural and human-built structures. Build all five of Plato's solids in relation to their duals, and see how they represent the 5 elements:
the Tetrahedron (4 -faces) $=$ fire
the Cube (6-faces) = earth

- the Octahedron (8-faces) = water
- the Icosahedron (20-faces) = air
- the Dodecahedron (12 -faces) is
the shape reserved for the cosmos!

Plane tessellations and polyhedra:

Before building the solids, look at how the foam pieces fit together on a flat surface. First try the small triangles. Notice the shape of a piece is different when it's flipped over. Be sure the same side is facing up (in a flat arrangement) or outward (in a polyhedron) for all of them. This is also true for the pentagons.

Ignoring holes and small gaps, they cover a flat surface. Equilateral triangles form one of the three regular tessellations (tilings). This means that each piece, or tile, is a regular polygon of the same type, and when put together they cover a flat surface (theoretically the infinite mathematical plane)
without "real" gaps or overlaps. A reguar tessellation is like a two-dimensional Platonic Solid.
Now look at a point (vertex) where six triangles come together. Remove one of the six to
 leave a gap. If you bring the two edges of the gap together, you get a threedimensional pyramid with a regular pentagon as its base. This pyramid is part of an icosahedron.
Next, lay them flat again and remove another triangle, so only four are left. If you bring these together to close the gap, you get a pyramid with a square base. This is half of an octahedron.
Finally, lay them flat again and remove another triangle, so only three are left.
 second regular tessellation
Remove the upper right square as shown, and bring the two edges together to

If you bring these together to close the gap, you get a pyratriangle base. This is a tetrahedron.

The final regular tessellation is made up fit together on a flat surface without a gap or overlap. Since at or ovenap. Since at least three polygons
close the gap left by the removed square. This forms half a cube.
Finally, look at the pentagon pieces. If you fit three of these together on a flat surface, there is a small will not tessellate; i.e., they will not cover the

If you bring the two edges in the gap together, you will form part of a dodecahedron. You've now formed parts of each of

START HERE! Plało's Solids

 InstructionsYou can build the five Platonic Solids, or polyhedra, and their duals.

A polyhedron is a solid whose faces are polygons. Only five convex regular polyhedra exist (i.e., each face is the same type of regular polygon-a triangle, square or pentagon-and there are the same number of faces around every corner.)

If you put a point in the center of each face of a polyhedron, and connect those points to their nearest neighbors, you get its dual.
These center points are now the corners (or vertices) of the dual.

etrahedron
$F=4$

(Hexahe
$F=6$
$E=12$
$V=8$

Octanedron
$\mathrm{F}=8$
$\mathrm{E}=12$
$\mathrm{~V}=6$

The Platonic Solids are named according to the number of faces (F) they possess. For example "octahedron" means " 8 -faces." The number of Faces (F), Edges (E) and Vertices (V) for each solid are shown below. An edge is a line where two faces meet, and a vertex is a point where three or more faces meet. Each Platonic Solid has another Platonic Solid as its dual. The dual of the tetrahedron (" 4 -faces") is again a tetrahedron; the dual of the cube is the octahedron ("8-faces"), and vice versa. The dual of the dodecahedron ("12-faces") is the icosahedron ("20-faces"), and vice versa.
in influence in Western thought.
While Plato didn't discover the Platonic solids, he and his followers associated them with the four classical elements earth with the cube, air with the octahedron, water with the icosahedron, and fire with the tetrahedron. The dodecahedron was reserved for the heavens

The Platonic Solids and other polyhedra were widely studied during the Renaissance. Johannes Kepler was a German mathematician and astronomer who lived from 1571-1630. He discovered the laws of planetary motion that for the first time explained the orbits of the planets in our solar system. Earlier he incorrectly associated the orbits of the six known planets with a nesting of the five Platonic Solids within a sphere.

Renaissance artists also studied the Platonics and other polyhedra: Albrecht Dürer (1471-1528)
prominently featured a polyhedron in one of his most famous engravings, Melancolia I.
must meet at the vertex of a polyhedron, there are no regular solids with hexagonal faces. Any regular polygon with more than six sides will have larger angles than hexagon, so there are no regular solids whose faces have more than five sides.

Solid history
Plato was a Gree philosopher mathematician, and teacher who lived eacher who lived round 429/423

Tetrahedron

3

4

Octahedron/Cube

4

2

ZOMETOOL RULES!

(1) If it works, it works perfectly.
...and if it doesn't work, it doesn't work at all. Don't force Zometool components. You can bend a strut to fit it into a tight spot, but struts in finished models are always

Hint you can tell which sthut fift beemeen two balls in momodel by lining up the ebals
(2) Don't break it apart; take it apart!

Icosa/Dodecahedron

